2. Brundel M, van den Heuvel M, de Bresser J, Kappelle LJ, Biessels GJ; Utrecht Diabetic Encephalopathy Study Group. Cerebral cortical thickness in patients with type 2 diabetes. J Neurol Sci 2010;299:126–130.
5. Khedher L, Ramírez J, Górriz JM, Brahim A, Segovia F; Alzheimer’s Disease Neuroimaging Initiative. Early diagnosis of Alzheimer’s disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images. Neurocomputing 2015;151(Part 1):139–150.
6. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A, editors. Medical image computing and computer-assisted intervention – MICCAI 2015. Lecture Notes in Computer Science, vol 9351. Springer; Cham: 2015. p. 234–241.
7. Milletari F, Navab N, Ahmadi SA. V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: Presented at 2016 Fourth International Conference on 3D vision (3DV); October 25-28, 2016. Piscataway, NJ: IEEE; 2016. p. 565–571.
8. Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin S, Joskowicz L, Sabuncu M, Unal G, Wells W, editors. Medical image computing and computer-assisted intervention – MICCAI 2016. Lecture Notes in Computer Science, vol 9901. Springer; Cham: p. 424–432.
9. Kamnitsas K, Ledig C, Newcombe VF, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 2017;36:61–78.
10. Havaei M, Davy A, Warde-Farley D, et al. Brain tumor segmentation with Deep Neural Networks. Med Image Anal 2017;35:18–31.
12. Domingos P. A few useful things to know about machine learning. Commun ACM 2012;55:78–87.
13. Leung KK, Clarkson MJ, Bartlett JW, et al. Robust atrophy rate measurement in Alzheimer’s disease using multi-site serial MRI: tissue-specific intensity normalization and parameter selection. Neuroimage 2010;50:516–523.
14. Lemieux L, Wieshmann UC, Moran NF, Fish DR, Shorvon SD. The detection and significance of subtle changes in mixed-signal brain lesions by serial MRI scan matching and spatial normalization. Med Image Anal 1998;2:227–242.
15. Ghanei A, Soltanian-Zadeh H, Jacobs MA, Patel S. Boundary-based warping of brain MR images. J Magn Reson Imaging 2000;12:417–429.
16. Ashburner J, Friston KJ. Voxel-based morphometry: the methods. Neuroimage 2000;11(6 Pt 1):805–821.
17. Pereira S, Pinto A, Alves V, Silva CA. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 2016;35:1240–1251.
18. Roth HR, Lu L, Farag A, et al. Deeporgan: Multi-level deep convolutional networks for automated pancreas segmentation. In: Navab N, Hornegger J, Wells W, Frangi A, editors. Medical image computing and computer-assisted intervention -- MICCAI 2015. Lecture Notes in Computer Science, vol 9349. Springer; Cham: 2015. p. 556–564.
19. Zhao A, Balakrishnan G, Durand F, Guttag JV, Dalca AV. Data augmentation using learned transformations for one-shot medical image segmentation. In: Presented at 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); June 15-20, 2019. Piscataway, NJ: IEEE; 2019. p. 8535–8545.
20. Fischl B. FreeSurfer. Neuroimage 2012;62:774–781.
22. Alkabawi EM, Hilal AR, Basir OA. Computer-aided classification of multi-types of dementia via convolutional neural networks. In: Presented at 2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA); May 7-10, 2017. Piscataway, NJ: IEEE; 2017. p. 45–50.
23. Akhila JA, Markose C, Aneesh RP. Feature extraction and classification of dementia with neural network. In: Presented at 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT); July 6-7, 2017. Piscataway, NJ: IEEE; 2017. p. 1446–1450.
24. Dolph CV, Alam M, Shboul Z, Samad MD, Iftekharuddin KM. Deep learning of texture and structural features for multiclass Alzheimer’s disease classification. In: Presented at 2017 International Joint Conference on Neural Networks (IJCNN); May 14-19, 2017. Piscataway, NJ: IEEE; 2017. p. 2259–2266.
25. Faturrahman M, Wasito I, Hanifah N, Mufidah R. Structural MRI classification for Alzheimer’s disease detection using deep belief network. In: Presented at 2017 11th International Conference on Information & Communication Technology and System (ICTS); October 31, 2017. Piscataway, NJ: IEEE; 2017. p. 37–42.
27. Islam J, Zhang Y. A novel deep learning based multi-class classification method for Alzheimer’s disease detection using brain MRI Data. In: Zeng Y, He Y, Kotaleski JH, et al., editors. International Conference on Brain Informatics-BI 2017. Lecture Notes in Computer Science, vol 10654. Springer; Cham: 2017. p. 213–222.
29. Kumar P, Nagar P, Arora C, Gupta A. U-segnet: fully convolutional neural network based automated brain tissue segmentation tool. In: Presented at 2018 25th IEEE International Conference on Image Processing (ICIP); October 7-10, 2018. Piscataway, NJ: IEEE; 2018. p. 3503–3507.
30. Thyreau B, Taki Y. Learning a cortical parcellation of the brain robust to the MRI segmentation with convolutional neural networks. Med Image Anal 2020;61:101639.
32. Azami H, Sanei S, Mohammadi K. A novel signal segmentation method based on standard deviation and variable threshold. Int J Comput Appl 2011;34:27–34.